Adaptativity of Stochastic Gradient Descent

نویسندگان

  • Aymeric Dieuleveut
  • Francis Bach
چکیده

We consider the random-design least-squares regression problem within the reproducing kernel Hilbert space (RKHS) framework. Given a stream of independent and identically distributed input/output data, we aim to learn a regression function within an RKHS H, even if the optimal predictor (i.e., the conditional expectation) is not in H. In a stochastic approximation framework where the estimator is updated after each observation, we show that the averaged unregularized least-mean-square algorithm (a form of stochastic gradient descent), given a sufficient large step-size, attains optimal rates of convergence for a variety of regimes for the smoothnesses of the optimal prediction function and the functions in H. Our results apply as well in the usual finite-dimensional setting of parametric least-squares regression, showing adaptivity of our estimator to the spectral decay of the covariance matrix of the covariates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network

Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...

متن کامل

Conjugate gradient neural network in prediction of clay behavior and parameters sensitivities

The use of artificial neural networks has increased in many areas of engineering. In particular, this method has been applied to many geotechnical engineering problems and demonstrated some degree of success. A review of the literature reveals that it has been used successfully in modeling soil behavior, site characterization, earth retaining structures, settlement of structures, slope stabilit...

متن کامل

Comparison of Modern Stochastic Optimization Algorithms

Gradient-based optimization methods are popular in machine learning applications. In large-scale problems, stochastic methods are preferred due to their good scaling properties. In this project, we compare the performance of four gradient-based methods; gradient descent, stochastic gradient descent, semi-stochastic gradient descent and stochastic average gradient. We consider logistic regressio...

متن کامل

Conditional Accelerated Lazy Stochastic Gradient Descent

In this work we introduce a conditional accelerated lazy stochastic gradient descent algorithm with optimal number of calls to a stochastic first-order oracle and convergence rate O( 1 ε2 ) improving over the projection-free, Online Frank-Wolfe based stochastic gradient descent of Hazan and Kale [2012] with convergence rate O( 1 ε4 ).

متن کامل

An eigenvalue study on the sufficient descent property of a‎ ‎modified Polak-Ribière-Polyak conjugate gradient method

‎Based on an eigenvalue analysis‎, ‎a new proof for the sufficient‎ ‎descent property of the modified Polak-Ribière-Polyak conjugate‎ ‎gradient method proposed by Yu et al‎. ‎is presented‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015